Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli.

Identifieur interne : 002935 ( Main/Exploration ); précédent : 002934; suivant : 002936

Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli.

Auteurs : Sailesh Malla [Corée du Sud] ; Mattheos A G. Koffas ; Romas J. Kazlauskas ; Byung-Gee Kim

Source :

RBID : pubmed:22101053

Descripteurs français

English descriptors

Abstract

7-O-Methyl aromadendrin (7-OMA) is an aglycone moiety of one of the important flavonoid-glycosides found in several plants, such as Populus alba and Eucalyptus maculata, with various medicinal applications. To produce such valuable natural flavonoids in large quantity, an Escherichia coli cell factory has been developed to employ various plant biosynthetic pathways. Here, we report the generation of 7-OMA from its precursor, p-coumaric acid, in E. coli for the first time. Primarily, naringenin (NRN) (flavanone) synthesis was achieved by feeding p-coumaric acid and reconstructing the plant biosynthetic pathway by introducing the following structural genes: 4-coumarate-coenzyme A (CoA) ligase from Petroselinum crispum, chalcone synthase from Petunia hybrida, and chalcone isomerase from Medicago sativa. In order to increase the availability of malonyl-CoA, a critical precursor of 7-OMA, genes for the acyl-CoA carboxylase α and β subunits (nfa9890 and nfa9940), biotin ligase (nfa9950), and acetyl-CoA synthetase (nfa3550) from Nocardia farcinica were also introduced. Thus, produced NRN was hydroxylated at position 3 by flavanone-3-hydroxylase from Arabidopsis thaliana, which was further methylated at position 7 to produce 7-OMA in the presence of 7-O-methyltransferase from Streptomyces avermitilis. Dihydrokaempferol (DHK) (aromadendrin) and sakuranetin (SKN) were produced as intermediate products. Overexpression of the genes for flavanone biosynthesis and modification pathways, along with malonyl-CoA overproduction in E. coli, produced 2.7 mg/liter (8.9 μM) 7-OMA upon supplementation with 500 μM p-coumaric acid in 24 h, whereas the strain expressing only the flavanone modification enzymes yielded 30 mg/liter (99.2 μM) 7-OMA from 500 μM NRN in 24 h.

DOI: 10.1128/AEM.06274-11
PubMed: 22101053
PubMed Central: PMC3264098


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli.</title>
<author>
<name sortKey="Malla, Sailesh" sort="Malla, Sailesh" uniqKey="Malla S" first="Sailesh" last="Malla">Sailesh Malla</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Molecular Biotechnology and Biomaterials, School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Laboratory of Molecular Biotechnology and Biomaterials, School of Chemical and Biological Engineering, Seoul National University, Seoul</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
</affiliation>
</author>
<author>
<name sortKey="Koffas, Mattheos A G" sort="Koffas, Mattheos A G" uniqKey="Koffas M" first="Mattheos A G" last="Koffas">Mattheos A G. Koffas</name>
</author>
<author>
<name sortKey="Kazlauskas, Romas J" sort="Kazlauskas, Romas J" uniqKey="Kazlauskas R" first="Romas J" last="Kazlauskas">Romas J. Kazlauskas</name>
</author>
<author>
<name sortKey="Kim, Byung Gee" sort="Kim, Byung Gee" uniqKey="Kim B" first="Byung-Gee" last="Kim">Byung-Gee Kim</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22101053</idno>
<idno type="pmid">22101053</idno>
<idno type="doi">10.1128/AEM.06274-11</idno>
<idno type="pmc">PMC3264098</idno>
<idno type="wicri:Area/Main/Corpus">002C24</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002C24</idno>
<idno type="wicri:Area/Main/Curation">002C24</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002C24</idno>
<idno type="wicri:Area/Main/Exploration">002C24</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli.</title>
<author>
<name sortKey="Malla, Sailesh" sort="Malla, Sailesh" uniqKey="Malla S" first="Sailesh" last="Malla">Sailesh Malla</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Molecular Biotechnology and Biomaterials, School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Laboratory of Molecular Biotechnology and Biomaterials, School of Chemical and Biological Engineering, Seoul National University, Seoul</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
</affiliation>
</author>
<author>
<name sortKey="Koffas, Mattheos A G" sort="Koffas, Mattheos A G" uniqKey="Koffas M" first="Mattheos A G" last="Koffas">Mattheos A G. Koffas</name>
</author>
<author>
<name sortKey="Kazlauskas, Romas J" sort="Kazlauskas, Romas J" uniqKey="Kazlauskas R" first="Romas J" last="Kazlauskas">Romas J. Kazlauskas</name>
</author>
<author>
<name sortKey="Kim, Byung Gee" sort="Kim, Byung Gee" uniqKey="Kim B" first="Byung-Gee" last="Kim">Byung-Gee Kim</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Biosynthetic Pathways (genetics)</term>
<term>Coumaric Acids (metabolism)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli (metabolism)</term>
<term>Flavonoids (metabolism)</term>
<term>Medicago sativa (enzymology)</term>
<term>Medicago sativa (genetics)</term>
<term>Metabolic Engineering (MeSH)</term>
<term>Nocardia (enzymology)</term>
<term>Nocardia (genetics)</term>
<term>Petroselinum (enzymology)</term>
<term>Petroselinum (genetics)</term>
<term>Petunia (enzymology)</term>
<term>Petunia (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Propionates (MeSH)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Streptomyces (enzymology)</term>
<term>Streptomyces (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides coumariques (métabolisme)</term>
<term>Arabidopsis (enzymologie)</term>
<term>Arabidopsis (génétique)</term>
<term>Escherichia coli (génétique)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Flavonoïdes (métabolisme)</term>
<term>Génie métabolique (MeSH)</term>
<term>Medicago sativa (enzymologie)</term>
<term>Medicago sativa (génétique)</term>
<term>Nocardia (enzymologie)</term>
<term>Nocardia (génétique)</term>
<term>Petroselinum (enzymologie)</term>
<term>Petroselinum (génétique)</term>
<term>Petunia (enzymologie)</term>
<term>Petunia (génétique)</term>
<term>Propionates (MeSH)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Streptomyces (enzymologie)</term>
<term>Streptomyces (génétique)</term>
<term>Voies de biosynthèse (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Medicago sativa</term>
<term>Nocardia</term>
<term>Petroselinum</term>
<term>Petunia</term>
<term>Streptomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Medicago sativa</term>
<term>Nocardia</term>
<term>Petroselinum</term>
<term>Petunia</term>
<term>Streptomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Biosynthetic Pathways</term>
<term>Escherichia coli</term>
<term>Medicago sativa</term>
<term>Nocardia</term>
<term>Petroselinum</term>
<term>Petunia</term>
<term>Streptomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Escherichia coli</term>
<term>Medicago sativa</term>
<term>Nocardia</term>
<term>Petroselinum</term>
<term>Petunia</term>
<term>Protéines bactériennes</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
<term>Streptomyces</term>
<term>Voies de biosynthèse</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Coumaric Acids</term>
<term>Escherichia coli</term>
<term>Flavonoids</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides coumariques</term>
<term>Escherichia coli</term>
<term>Flavonoïdes</term>
<term>Protéines bactériennes</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Metabolic Engineering</term>
<term>Propionates</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génie métabolique</term>
<term>Propionates</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">7-O-Methyl aromadendrin (7-OMA) is an aglycone moiety of one of the important flavonoid-glycosides found in several plants, such as Populus alba and Eucalyptus maculata, with various medicinal applications. To produce such valuable natural flavonoids in large quantity, an Escherichia coli cell factory has been developed to employ various plant biosynthetic pathways. Here, we report the generation of 7-OMA from its precursor, p-coumaric acid, in E. coli for the first time. Primarily, naringenin (NRN) (flavanone) synthesis was achieved by feeding p-coumaric acid and reconstructing the plant biosynthetic pathway by introducing the following structural genes: 4-coumarate-coenzyme A (CoA) ligase from Petroselinum crispum, chalcone synthase from Petunia hybrida, and chalcone isomerase from Medicago sativa. In order to increase the availability of malonyl-CoA, a critical precursor of 7-OMA, genes for the acyl-CoA carboxylase α and β subunits (nfa9890 and nfa9940), biotin ligase (nfa9950), and acetyl-CoA synthetase (nfa3550) from Nocardia farcinica were also introduced. Thus, produced NRN was hydroxylated at position 3 by flavanone-3-hydroxylase from Arabidopsis thaliana, which was further methylated at position 7 to produce 7-OMA in the presence of 7-O-methyltransferase from Streptomyces avermitilis. Dihydrokaempferol (DHK) (aromadendrin) and sakuranetin (SKN) were produced as intermediate products. Overexpression of the genes for flavanone biosynthesis and modification pathways, along with malonyl-CoA overproduction in E. coli, produced 2.7 mg/liter (8.9 μM) 7-OMA upon supplementation with 500 μM p-coumaric acid in 24 h, whereas the strain expressing only the flavanone modification enzymes yielded 30 mg/liter (99.2 μM) 7-OMA from 500 μM NRN in 24 h.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22101053</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>05</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>78</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2012</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli.</ArticleTitle>
<Pagination>
<MedlinePgn>684-94</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.06274-11</ELocationID>
<Abstract>
<AbstractText>7-O-Methyl aromadendrin (7-OMA) is an aglycone moiety of one of the important flavonoid-glycosides found in several plants, such as Populus alba and Eucalyptus maculata, with various medicinal applications. To produce such valuable natural flavonoids in large quantity, an Escherichia coli cell factory has been developed to employ various plant biosynthetic pathways. Here, we report the generation of 7-OMA from its precursor, p-coumaric acid, in E. coli for the first time. Primarily, naringenin (NRN) (flavanone) synthesis was achieved by feeding p-coumaric acid and reconstructing the plant biosynthetic pathway by introducing the following structural genes: 4-coumarate-coenzyme A (CoA) ligase from Petroselinum crispum, chalcone synthase from Petunia hybrida, and chalcone isomerase from Medicago sativa. In order to increase the availability of malonyl-CoA, a critical precursor of 7-OMA, genes for the acyl-CoA carboxylase α and β subunits (nfa9890 and nfa9940), biotin ligase (nfa9950), and acetyl-CoA synthetase (nfa3550) from Nocardia farcinica were also introduced. Thus, produced NRN was hydroxylated at position 3 by flavanone-3-hydroxylase from Arabidopsis thaliana, which was further methylated at position 7 to produce 7-OMA in the presence of 7-O-methyltransferase from Streptomyces avermitilis. Dihydrokaempferol (DHK) (aromadendrin) and sakuranetin (SKN) were produced as intermediate products. Overexpression of the genes for flavanone biosynthesis and modification pathways, along with malonyl-CoA overproduction in E. coli, produced 2.7 mg/liter (8.9 μM) 7-OMA upon supplementation with 500 μM p-coumaric acid in 24 h, whereas the strain expressing only the flavanone modification enzymes yielded 30 mg/liter (99.2 μM) 7-OMA from 500 μM NRN in 24 h.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Malla</LastName>
<ForeName>Sailesh</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Biotechnology and Biomaterials, School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Koffas</LastName>
<ForeName>Mattheos A G</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kazlauskas</LastName>
<ForeName>Romas J</ForeName>
<Initials>RJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Byung-Gee</ForeName>
<Initials>BG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>11</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003373">Coumaric Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005419">Flavonoids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011422">Propionates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7YA4640575</RegistryNumber>
<NameOfSubstance UI="C080220">aromadedrin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IBS9D1EU3J</RegistryNumber>
<NameOfSubstance UI="C495469">trans-3-(4'-hydroxyphenyl)-2-propenoic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053898" MajorTopicYN="N">Biosynthetic Pathways</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003373" MajorTopicYN="N">Coumaric Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005419" MajorTopicYN="N">Flavonoids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000455" MajorTopicYN="N">Medicago sativa</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060847" MajorTopicYN="Y">Metabolic Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009615" MajorTopicYN="N">Nocardia</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028528" MajorTopicYN="N">Petroselinum</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032306" MajorTopicYN="N">Petunia</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011422" MajorTopicYN="N">Propionates</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013302" MajorTopicYN="N">Streptomyces</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22101053</ArticleId>
<ArticleId IdType="pii">AEM.06274-11</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.06274-11</ArticleId>
<ArticleId IdType="pmc">PMC3264098</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Sep;75(18):5831-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19633125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Rev. 2000 Dec;52(4):673-751</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11121513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 May;69(5):2699-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12732539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Pharm Res. 2006 Dec;29(12):1102-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17225458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Sep;71(9):5610-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2001 Dec;65(4):523-69, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11729263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2005 Sep;68(4):498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15770480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2006 Feb 8;54(3):823-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Sep;5(9):380-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1973 Apr 12;302(2):457-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4699252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1975 Aug 1;56(1):205-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">240705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmazie. 2000 Aug;55(8):623-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10989845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mass Spectrom. 2007 Sep;42(9):1136-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17565713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1988 Aug;134(8):2249-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3075658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2006 Mar;8(2):172-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16384722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharm. 2008 Mar-Apr;5(2):257-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18333619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nat Prod. 1999 Apr;62(4):601-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10217718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2007 Sep 12;298(10):1189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1980 Jul;143(1):302-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6995433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2008 Nov-Dec;26(6):548-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2000 Nov;55(6):481-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1983 Jul;155(1):113-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6345502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2007 Oct;2(10):1214-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17935117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Pharm Bull. 2010;33(9):1494-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20823563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta Med. 1982 Oct;46(2):124-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17396957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes Care. 2004 Jul;27(7):1741-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15220256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ethnopharmacol. 2008 Jul 23;118(2):257-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18508214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Dispos. 2006 Oct;34(10):1786-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16868069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Nutr. 2002;22:19-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12055336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2006 Mar;70(1):85-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16025328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2011;342:d1309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21415101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Jun;73(12):3877-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ethnopharmacol. 1996 Jan;50(1):27-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8778504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2006 Dec 7;355(23):2427-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17145742</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
<region>
<li>Région capitale de Séoul</li>
</region>
<settlement>
<li>Séoul</li>
</settlement>
<orgName>
<li>Université nationale de Séoul</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Kazlauskas, Romas J" sort="Kazlauskas, Romas J" uniqKey="Kazlauskas R" first="Romas J" last="Kazlauskas">Romas J. Kazlauskas</name>
<name sortKey="Kim, Byung Gee" sort="Kim, Byung Gee" uniqKey="Kim B" first="Byung-Gee" last="Kim">Byung-Gee Kim</name>
<name sortKey="Koffas, Mattheos A G" sort="Koffas, Mattheos A G" uniqKey="Koffas M" first="Mattheos A G" last="Koffas">Mattheos A G. Koffas</name>
</noCountry>
<country name="Corée du Sud">
<region name="Région capitale de Séoul">
<name sortKey="Malla, Sailesh" sort="Malla, Sailesh" uniqKey="Malla S" first="Sailesh" last="Malla">Sailesh Malla</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002935 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002935 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22101053
   |texte=   Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22101053" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020